
Cover the keys, lah!

thecryptofruit, December 2022

More than we care to admit, our lives are bound to a few bytes of data that

represent our passwords or our keys, first with the rise of the internet and now

with web3. How to keep cryptographically protected things actually secure? Here

are some thoughts that I’ve assembled primarily for my own sake, hopefully it

might help you, too.

Intro

Any part of a person’s digital presence, any access to email, socials or work

documents, any NFT or cryptocurrency somebody holds, all of them are protected

by some kind of password, or a private key for crypto-tokens. What is the optimum

way to keep these keys per se is an extremely interesting question, but too complex

for this piece as it has more social connotations than technological
1
. Instead, here I

try to explore the overall security considerations of the custody of crypto

assets that are somewhat organizational in nature.

There are two main principles to keep at heart and one can’t over emphasise their

importance:

Not your keys, not your coins.

&

Security is a chain, strong only as its weakest link.

If you don’t understand why they are to be treated seriously, you haven’t done your

homework and at this point would be advised to take them as axioms.

We would bother with the really pesky and inconvenient things that follow below

because it does matter - too many people have already lost their money and many

more will, lots of businesses have permanently shuttered their operations and we

simply wouldn't want to experience such a catastrophe first hand. Keep in mind

these assets are publicly discoverable on blockchain and our setup is being poked

at non-stop, without us even knowing - that is a guaranteed, permanent and

unavoidable threat.

1
The answer is not as simple as putting the passwords in a password manager, as it just

means that now we’re reducing the problem to protecting the “master password” or

something to the password manager. It’s also not as simple as putting cold wallets and

recovery seeds in a safety box or a vault, as these also require a key or other restricted

access. I want to stress that all this always narrows down to protecting a few secret

characters and it takes a good look into social patterns and historical perspective to

address it in fullness. Humans have protected their most precious things since forever and

in quite astonishing ways.

1



Quick primer on terminology

There are lots of confusing and ambiguous terms in the web3 space, we’re not

doing a good job at all. As one of those who are allergic to what “crypto” or a

“token” means these days, I’m pointing a finger to utterly poor and overzealous

marketing, but am aware that it is what it is and so let’s work with it.

Password - we can shield private data by encrypting it with a secret key, a.k.a. a

password: the same secret key (with limited transformations) is used for encrypting

and decrypting the data, thus if we share the shielded message between Alice and

Bob, they both need to know that key. This is called symmetric key cryptography,

e.g. AES.
2

Private key - part of the keypair in asymmetric cryptography that is kept private

and can (i) prove the ownership of the public key (sign a transaction) and (ii)

decrypt a message that was encrypted with corresponding public key. Note that

while Bitcoin uses ECDSA to create keypairs, it doesn’t encrypt anything, instead it

heavily utilizes digital signatures.
3

Public key - part of the keypair that can be shared without revealing the protected

data, but usually has detrimental privacy implications.

Address (in the context of blockchain) - is a derivation of the public key, in Bitcoin

it is equal to the public key and in Ethereum is the last 20 bytes of the Keccak-256

hash of the public key

Account - a structure in account-based blockchains, such as Ethereum, and

contains: address, balance, code, nonce, storage pointer. An account can be an

EOA (externally owned account) which is private key-based, or a contract account,

which doesn’t have a private key behind it, but is addressable and has a code that

manages access.

Wallet - an interface to the account(s) that provides connectivity to the blockchain

network via a node. A cold wallet is a way of storing private data on an off-line

medium, such as steel or paper. A hot wallet is software that has access to private

keys, is connected to the internet and interacts with the blockchain network

(usually indirectly via a centralized web3 provider). It’s not hard to guess that the

majority of wallets are hot wallets and that MetaMask leads the pack in the popular

Ethereum network.
4

4
MetaMask is a browser extension that accesses the encrypted private keys on the local

device. I repeat, a browser extension - not a very safe place. By default it connects to Infura

node provider, a part of Consensys umbrella. And tracks IP addresses, likely linking them

against wallet addresses.

3
Encrypting messages: E(msg,pubKeyBob)=c; D(c,privKeyAlice)=msg

Verifying messages: Sign(msg,privKeyAlice)=signature; Verify(signature,pubKeyAlice)=mgs

2
Encryption(msg,key)=ciphertext; Decryption(ciphertext,key)=msg

2



Node - a peer in the blockchain network that does many things, but primarily

broadcasts transactions and other messages. Running a node is resource

consuming, so most people use “public” web3 providers, such as Infura, Alchemy,

Tenderly etc on Ethereum, but it’s rather straightforward, if inconvenient, to run a

node locally, either on a regular PC or a dedicated, pre-build device like Dappnode.

Custody - the obvious, yet not appreciated, thing about custody is that it is about

custody or ownership of crypto-assets, i.e. who has access to private keys.

Custodial wallets have managed private keys, which means a user does not have a

direct access to the keys and relies on the legal system for protection. With

non-custodial wallets users can access private keys directly and are thus in full

control. Self-custody is sometimes referred to as non-custodial wallets. Note that

with hardware wallets, such as the popular Trezor and Ledger Nano devices, the

user is in full control of the private keys, but the keys are actually never exposed

outside the hardware, so you can’t actually “see” them - which is quite neat,

because you can’t accidentally lose something you don’t have/see; and if the device

gets stolen, it’s likely still safe.

Generating private keys - remember that private keys are the critical part: to hold

the keys in a secure way, the keys must also be generated in a secure way,

otherwise the attacker could recreate them. It is such a delicate procedure that it

should be only done if we really know what we are doing. It all starts with a source

of randomness (entropy), everything is based on this so it is an extremely delicate

operation. With the entropy, we can then derive a password, a private key, or, in

deterministic-wallets, a mnemonic (a set of 12-24 words) that is more memorable

and easier to write down than funky characters. A mnemonic is used to create a

seed via key stretching and finally this seed can be used to derive child keys which

are the basic approach of organizing multiple keys that share a common root
5
. This

process must be done with maximum care! In Qubes OS, you can quickly create a

new, disposable virtual machine that was never online, do the work i.e. generate

the keys and safely transfer them to an always offline vault, then discard the

virtual machine and with it all the traces of the work completed.

Splitting access - having multiple, separate parts to gaining access is beneficial in

many cases (i.e. not putting all eggs in one basket) and there are two levels at

which we can split the access/authorization:

● we can either split the computations “over” a private key, so that multiple

parties participate in the signing of a transaction (see MPC, secure

multi-party computation, or the lesser SSS, Shamir’s Secret Sharing)
6
,

● or we can require multiple “normal” participants to contribute in the signing

with “normal” private keys (multi-sig, which is network-specific, e.g. it is an

6
https://blog.bitgo.com/multi-sig-vs-mpc-which-is-more-secure-699ecefc8430

5
Here’s an excellent walk-through keys and wallets:

https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.asciidoc

3

https://blog.bitgo.com/multi-sig-vs-mpc-which-is-more-secure-699ecefc8430
https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch05.asciidoc


OP_CODE in Bitcoin
7
, but in Ethereum requires a custom multi-sig contract

implementation
8
).

MPC vs multi-sig

A simplified inverse pyramid shows the distance (complexity) from the assets as we

store them in various options currently available. It’s a burden to manage the

bottom of the pyramid - it gives us the most freedom on account of most

responsibility! The more layers the pyramid has, the quicker it can top over. On

the other hand, the upper layers enable more features, e.g. can be used in

exchanging assets or even generating extra yield.

Which one do you choose? How do you create it and initialize it, how do you store it

and how do you use it?

8
A common library to use in 2022 is: https://app.safe.global/

Many years ago, it was Parity’s library, however after a horrible hack it went away:

https://www.parity.io/blog/the-multi-sig-hack-a-postmortem

7
https://en.bitcoin.it/wiki/OP_CHECKMULTISIG

4

https://app.safe.global/
https://www.parity.io/blog/the-multi-sig-hack-a-postmortem
https://en.bitcoin.it/wiki/OP_CHECKMULTISIG


Note 1: Do not do your own cryptography, as tempting as it might be, it will be

utterly bad, guaranteed
9
. It is also futile to do “extra” steps like scrambling

mnemonics
10

and it is often a nuisance going with the latest in the making
11

.

Note 2: If you are generating the entropy yourself, do everything you can in order to

have a secure process. As a first rule, do not do it with a device that is connected to

the internet, or will be ever in the future, and do a clean wipe of all the components

when done with the generation and the resulting data is safely moved to a secure

location. Qubes OS is your friend in this in the sense of providing a reasonably

clean, yet handy environment.

Note 3: With the rise of MPC-based solutions (used by the biggest custody providers

like Fireblocks and Coinbase, but can also be DIY
12

), we still need to take care of

managing secret data, and the challenges of secure generation and distribution of

keys still remain. There’s no free lunch - more complexity, more risks.

Security considerations

All standard security principles apply with crypto assets, but the situation here is

actually worse: an exposed weakness immediately and irrevocably drains the funds,

which implies we must focus on preventative security controls and, ultimately, on

physical controls, such as protecting access to private keys in the most direct,

physical way.

Secure custody covers two types of threats: malicious and accidental. That is, we

must protect against outside attacks, but also against human mistakes, software

errors and such. These dimensions are orthogonal, though it bears noting that

their final outcome is the same - the assets becoming permanently inaccessible to

us - whether as a mistake that opened us to an attack, or an accident that locked

or burned the assets. In almost all cases there is no going back.

Weaknesses

Weaknesses or vulnerabilities here have primarily to do with private keys,

passwords that protect them, and to a lesser extent, malleability
13

of transactions

we make.

13
https://en.wikipedia.org/wiki/Malleability_(cryptography)

12
“Awesome” list on MPC by Dragoș Rotaru: https://github.com/rdragos/awesome-mpc

and Boston University’s MPC resources page: https://multiparty.org/

11
Ethereum hashing function is “almost” SHA3:

https://ethereum.stackexchange.com/a/554

10
BTCRecover can descramble quickly:

https://btcrecover.readthedocs.io/en/latest/BIP39_descrambling_seedlists

9
Just one of the crazy examples out there:

https://dci.mit.edu/research/2019/3/31/cryptanalysis-of-curl-p-and-other-attacks-on-the

-iota-cryptocurrency

5

https://en.wikipedia.org/wiki/Malleability_(cryptography)
https://github.com/rdragos/awesome-mpc
https://multiparty.org/
https://ethereum.stackexchange.com/a/554
https://btcrecover.readthedocs.io/en/latest/BIP39_descrambling_seedlists
https://dci.mit.edu/research/2019/3/31/cryptanalysis-of-curl-p-and-other-attacks-on-the-iota-cryptocurrency
https://dci.mit.edu/research/2019/3/31/cryptanalysis-of-curl-p-and-other-attacks-on-the-iota-cryptocurrency


Threats

These weaknesses have the potential to be exploited and so present a threat.

Threats come across multiple dimensions.

1. Endogenous vs exogenous threats

Endogenous (us making mistakes) or exogenous (attackers, or third-party: e.g.

outsourced software and hardware we use or external providers we subscribe to);

here we should mention one special case of an exogenous threat that is called

Advanced Persistent Threat (APT), a state-backed actor that has practically infinite

resources and against which we can at best prolong the defense a little bit, knowing

that ultimately our setup will be compromised.

2. Temporal threats

Longevity of the setup - what is secure today, might not be tomorrow or in few

years, because a part of our setup would become obsolete due to maintenance

challenges or become insecure due to general technological progress, but also we

ourselves could become incapacitated, thus our crypto assets would come under

risk.

3. Location-based threats

Location of keys/passwords - are they stored locally on our computer or at a

remote location or in a cloud; does this location have access to the internet and can

thus leak; do we maintain a redundant storage for backup and if so, all previously

mentioned considerations apply for the backup again and independently.

Keys as sensitive data

We can apply standard data protection controls to private keys, because keys are

data, thus consider data at rest (where is it stored, is it encrypted, what

permissions are set up), data in transit (once we access the keys, we have to move

them somewhere, e.g. input them into a wallet, which might be online, thus

consider the security of transportation), data in use (the keys are present in the

computer memory, consider how secure is our operating system, hardware, etc.).

Responding to threats

A standard threat response process applies:

preparation - identification - containment - post-incident activity.

N.b. once we detect that an incident has happened, we must move whatever assets

are left to a safe wallet - with haste and make sure to provide the transfers with

extremely high transaction fees, so our transactions beat those of the attacker!

Every second counts (blockchain transactions take between a couple of seconds to

a couple of minutes). Since we must have assets spread across different locations

and at various layers in the technological stack, it is our decision which ones we’ll

urgently move, but we should usually move all at a particular layer. Example: the

attack happened at one of our MetaMask accounts, thus we won’t be moving our

6



cold storage assets, but we will move all remaining assets in all MetaMask accounts

because we suspect there was a browser hijack or a browser extension compromise

at play.

However, detecting that we’ve been hacked is not straightforward. Imagine owning

tens or hundreds of different accounts for various assets across multiple

blockchains. How do we know that an unauthorized transfer was made? We’d be

among a minority if we at least maintained an up-to-date overview of our whole

portfolio, let alone have a complete notification and alerting system in place.

Friendliness of security

User experience in accessing crypto-assets is usually inversely related to security.
14

We are getting better, no doubt, but the basic premise remains unchanged. Here’s

why, in my experience at least. User experience has to do with how easy it is for

users to understand and use something to achieve their goal. Alas, by making

something simple to the user, we usually mask complexity away, but while it now

looks simpler on the outside, we have also just increased complexity by introducing

a wrapping layer - and created another attack vector. Secondly, by making it easy

to use, we removed friction, enabling faster access with less hops and less clicks in

less time - but with no friction, in all likelihood, we are now increasing our chances

of making mistakes (remember the irreversibility of blockchain transactions), which

doubles if we think that if something is easy, we might do it more often and more is

not always better. Lastly, UX improvements often involve additional action steps

and/or additional people or services, which is detrimental at least as much as it is

beneficial to our capability of performing autonomous actions
15

.

Inversely related to the UX is the closeness of private keys. Hot wallets have

private keys available in an app that is connected to the internet, which means that

signing transactions is a matter of clicking a button. Their only protection is that

the private key is somehow encrypted, e.g. on our disk or in the cloud, and is

decrypted once we enter the app and hopefully enter a PIN, a password or

something not too dramatic. Cold wallets on the other hand have private keys (or

mnemonics or seeds) in an offline storage or sometimes there is no app at all, just a

private key written on a paper, engraved in steel or similar. Having such an extra

15
This is a contentious issue. My reasoning is that less savvy users should also be treated

as first class citizens, always having a path out of the challenges they face, rather than

introducing opaque “solutions” under pretense of user-friendliness. Being autonomous in

transacting is important for humans, because we know that slavery is unacceptable. In

order to be autonomous, one must be able to act, regardless of any context, e.g. wealth,

race, location etc. At this moment, this is only possible via the blockchain-based networks

that the reader here might take for granted. There is not one single such possibility with

legacy systems. Thus, to preserve this uniformity of accessibility, UX and other upper layers

must not act as dependencies and must allow graceful degradation.

14
As bad as it sounds and with a plethora of “services” providing “easy to use” wallets, I am

getting a feeling this is more of a fundamental principle, rather than an opportunity for a

fancy product. I’ve been closely involved with access management for about two decades,

half of it related to crypto-assets, and I’ve seen a lot of progress, a lot of approaches, and a

lot of too-good-to-be-true marketing commotion.

7



gap from the private keys provides better protection, but is cumbersome, so we

would use cold wallets only for infrequent operations. Warm wallets are something

in between: they keep private keys in an online environment, but require human

interaction either at signing transactions or by running software locally.

Is something really more secure if it’s offline, or in a safety box or we’re running the

wallet software locally? In principle, yes, the attack surface is much smaller, but in

practice it depends. Many people have lost their paper cold wallets, or have

forgotten their password to an offline disk or old computer with private keys on. In

other words, the number and severity of exogenous threats increases with our

distance from private keys, but decreases for endogenous.

Evaluating risk

Which finally brings us to evaluating our risk exposure. Risk is measured by the

impact of an exploit on our system and the likelihood of the threat to be exploited.

There are ways to quantify these.
16

The relation between the impact and likelihood

indicates an important lesson: we need to take a balanced approach to protecting

crypto-assets, being most careful where the impact of an attack is highest, just like

our bodies have brains much better protected than, say, hair.

General setup

By now it should be clear that the system to protect our private keys should in

majority of cases be balanced, it should hedge against different threats, be usable

and friendly as much or as little as it can be, and should be safe not just in this

moment, but hopefully for a few years. In an extreme, but a literal sense, some

parts of this system must endure even if our computer crashes (it will, eventually),

even if the wallet/encryption software we use gets deprecated (it will, eventually),

and it is worth considering our own incapacitation, which will happen one day, and

its consequences to the accessibility of our crypto-assets.

The setup chosen will depend on case by case - consider how often we will need

access to how big a part of our portfolio. The objectives of a trader are very different

to the objectives of someone wanting to maximize long-term security.

Top to bottom, we usually have:

● a small part in a hot wallet for daily things that won’t hurt if lost;

● a significant chunk in one or more of these: a hardware wallet, a warm

wallet, a multi-sig setup or a smart wallet, which all require an additional

manual step, sometimes involving another person, and while it would hurt if

lost, it won’t break us;

● a major chunk goes to cold wallets, where we have flexibility in spreading

across storage (multiple locations, multiple physical types of cold wallets,

16
For a comprehensive paper on this, I recommend NIST’s Guide for Conducting Risk

Assessments, which is available online.

8



key-splitting, and potential encryption at this level, though be extremely

careful not to over-complicate and get locked out);

● when swapping assets, trading, staking or similar actions, we usually must

use a centralized platform (thus losing direct control over the assets) or a

decentralized protocol (usually can maintain some control), so a good

practice is to minimize the time there: do the action and withdraw back.

If we’re using a backup system for anything of the above, we have to treat it with

the same care as the original.

Few tips from practice

We should exchange our experiences in order to improve everyone’s setup, however

we will keep noticing that each of the setups is unique. What I have and what my

objectives are, is similar but not exactly the same to yours. Security is

tailored-made.

In no particular order, lots of these were learned the hard way …

Using different kinds of wallets:

● Store access credentials for the hot wallet in a reasonable way, but keep the

recovery codes in a safe place - chances are you’ll need to re-create it from

the seed, e.g. when changing computers or even reinstalling the browser.

● Organize the multi-sig with a 2-of-3, having two keys handy (e.g. in the

password manager, a hardware wallet, a mobile app, or a hot-wallet

account), and the third key stored tucked away, say, where storing the cold

wallet as we’ll only need it in an emergency.

● Prefer a hardware wallet to a hot one whenever possible.

● Hardware wallets need their firmware and apps updated from time to time.

Before doing big, delicate transactions, do check your version against the

latest release, take the time.

● Multi-sig in practice takes a lot of time, esp. if we have to chase the

signatories across time zones. Don’t underestimate the coordination effort.

● Safely store the recovery notes, i.e. if they’re on paper, protect it against both

fire and water.

Keeping it sane:

● Keep track of the custody setup in one way or another, but consider this

document compromised.
17

● Software and hardware deprecate in time. Wallets get deprecated, too, who

remembers Armory, once considered the ultimate wallet? Consider making a

snapshot of the current working environment that can be reliably re-run in

the future.

17
I am at a loss to understand why so many people are still unaware of an almost 150 years

old Kerckhoffs's principle: https://en.wikipedia.org/wiki/Kerckhoffs%27s_principle

9

https://en.wikipedia.org/wiki/Kerckhoffs%27s_principle


● Wallets have different “standards” they follow. E.g. BIP-39 “Mnemonic code

for generating deterministic keys” is as standard as it gets, however an

excellent wallet like Electrum is not 100% onboard
18

.

● Separate personal operations from work! Segregate the environment for each

project/organization! Qubes OS makes this a walk in the park.
19

● Do not put all cold-wallets and recovery mnemonics of other wallets into the

same place. Treat all locations with the same high level of scrutiny. It is

inconvenient, but that is the nature of this.

Whatever setup we have, I can guarantee some rough edges and nervous

situations. Keep in mind that this is still a young field and a rapidly changing

technology - very few things here are stable.

Live with it

After we have all things set up, we need to keep an overview and be alerted if

something unpredictable happens. Here are a few useful tools that can save us

from tears and sweat:

● Rotki - portfolio tracker that is open-source and aims to preserve privacy

● OpenZeppelin Defender Sentinels - alerts on the events/transactions

● Tenderly Alerting - easy alerting

● DappNode - run your own node(s) on your own hardware and point your

Rotki or other local apps to use it, very easy to use and very web3 friendly

Recommended reading

Wallet Security: The ‘Non-Custodial’ Fallacy
20

is an excellent exploration into what

is custody, really. Written by Nassim Eddequiouaq and Riyaz Faizullabhoy from

a16z crypto, you know it’ll be good. As I’ve explained above in more detail, we can

start our setup from various levels, from generating private keys on our own, to

fancy smart wallets. The more layers in the stack we use, somewhat easier the UX,

but greater the attack surface.

How to Back Up a Seed Phrase
21

is an article by a veteran Jameson Lopp from Casa

and has some great general tips, I esp. liked the list of approaches and services for

seed storage.

An In-Depth Look at the Parity Multisig Bug
22

offers some important insights into

smart contract security. Written by Lorenz Breidenbach, Phil Daian, Ari Juels, and

Emin Gün Sirer from Cornell’s IC3, it offers some juicy details about one of the

largest hacks ever, this one affecting a multi-signature library that was at the time

22
https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/

21
https://blog.lopp.net/how-to-back-up-a-seed-phrase/

20
https://a16zcrypto.com/wallet-security-non-custodial-fallacy/

19
This is as it should be done always, for so many reasons:

https://www.qubes-os.org/news/2022/10/28/how-to-organize-your-qubes/

18
Electrum has some concrete details on it, nonetheless it was made 2 years prior to

BIP-39.

10

https://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://blog.lopp.net/how-to-back-up-a-seed-phrase/
https://a16zcrypto.com/wallet-security-non-custodial-fallacy/
https://www.qubes-os.org/news/2022/10/28/how-to-organize-your-qubes/


“the industry standard”. I would esp. like to raise their remark about how

complexity is security’s oldest enemy, which obviously applies for young

technologies at least as much as anywhere else.

Leaderboard on Rekt
23

is a list of hacks in this space, which should provide us with

more than enough motivation to treat custody with the necessary seriousness. Also

a humbling reminder that we all make mistakes and should keep learning and

improving.

Outro

As Jameson Lopp would say in a not so subtle way
24

:

Whatever setup we have for protecting the private keys and passwords in general, a

good approach is to have a balanced system, segregated across threats and

use-cases, and keeping an open eye on that ultimate little thing that unlocks it all!

24
https://twitter.com/lopp/status/1590796484714188801

23
https://rekt.news/leaderboard/

11

https://twitter.com/lopp/status/1590796484714188801
https://rekt.news/leaderboard/

